Add like
Add dislike
Add to saved papers

Stabilization of lncRNA GAS5 by a Small Molecule and Its Implications in Diabetic Adipocytes.

Cell Chemical Biology 2019 March 22
Long noncoding RNA (lncRNA) are regulatory RNAs >200 nt. We previously showed that lncRNA GAS5 decreases significantly in serum of type 2 diabetes mellitus (T2DM) patients. Hence, we sought to decipher the molecular mechanisms underlying the role of GAS5 in T2DM in adipose tissue. Using CHIP-RIP, we demonstrate that GAS5 binds to promoter of insulin receptor to regulate its expression, and its depletion inhibits glucose uptake and insulin signaling. Toward stabilizing GAS5 levels in T2DM, we incorporated a strategy to limit the degradation of GAS5 by blocking the interaction of GAS5 and UPF1 with a small molecule identified using OBTC screening strategy. NP-C86 binds to GAS5 with high affinity, and increases GAS5 levels and glucose uptake in diabetic patient adipocytes. As a broader impact, NP-C86 may be used as a molecular probe to investigate the intricacies of GAS5 in relevant biological systems as it offers specificity, efficient cellular uptake and is non-cytotoxic.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app