Add like
Add dislike
Add to saved papers

Effect of layer thickness on the marginal and internal adaptation of laser-sintered metal frameworks.

STATEMENT OF PROBLEM: Laser sintering is commonly used for fabricating metal-ceramic restorations. The layer thickness of the sintering process may affect restoration adaptation. However, limited information is available regarding its impact.

PURPOSE: The purpose of this in vitro study was to compare the marginal and internal adaptation of laser-sintered cobalt-chromium single crown frameworks sintered with layer thicknesses of 25 and 50 μm.

MATERIAL AND METHODS: Thirty resin dies that represented prepared single molar abutment teeth were prepared by using a 3-dimensional printer and were divided into 3 groups (n=10) according to the method used for fabricating metal frameworks: group C, metal frameworks fabricated by using the lost-wax method (control); group L25, metal frameworks fabricated by using direct metal laser melting with a layer thickness of 25 μm; and group L50, metal frameworks fabricated by using direct metal laser melting with a layer thickness of 50 μm. After fabricating the metal frameworks, 15 vertical marginal discrepancy measurements were made in each axial region (mesial, distal, buccal, and lingual) using a stereomicroscope. Next, all the specimens were sectioned from the midline, and 5 internal discrepancy measurements were made in each internal region (inner marginal, axial, and occlusal). The data were analyzed statistically by using 1-way ANOVA, the Tukey honestly significant difference, and Tamhane T2 tests (α=.05).

RESULTS: The highest marginal and internal discrepancy values were obtained for metal frameworks in group C, and these values were significantly different (P<.001) from those obtained for metal frameworks in the other 2 groups. No significant difference was observed in the marginal and internal discrepancy values of metal frameworks in groups L25 and L50.

CONCLUSIONS: These results indicate that layer thickness does not affect the adaptation of laser-sintered metal frameworks, yet both sintering parameters yielded significantly lower mean marginal discrepancy values than the cast group.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app