Add like
Add dislike
Add to saved papers

Lipidomic Analysis of Meibomian Gland Secretions from the Tree Shrew: Identification of Candidate Tear Lipids Critical for Reducing Evaporation.

Lipids secreted from the meibomian glands form the outermost layer of the tear film and reduce its evaporation. Abnormal changes in the quantities or compositions of lipids present in meibomian gland secretions (meibum) are known to lead to dry eye disease, although the underlying mechanism is not yet well understood. The tree shrew is the non-primate mammal most closely related to humans. To assess the utility of the tree shrew as a model for the study of dry eye disease, we analyzed the lipid profile of tree shrew meibum using an untargeted ESI-MS and MS/MSall shotgun approach. The resulting lipidome shared many similarities with human meibum, while also displaying some interesting differences. For example, several classes of lipids, including wax esters, cholesteryl esters, diesters, and OAHFAs, had relatively longer chain lengths in tree shrew meibum. These increases in length may promote more effective reduction of tear evaporation in the tree shrew, which likely underlies the much longer blinking interval of this mammal. Our results suggest that the tree shrew could be an effective model for study of dry eye.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app