Add like
Add dislike
Add to saved papers

Treating TB human neuroectodermal cell line with retinoic acid induces the appearance of neuron-like voltage-gated ionic currents.

Brain Research 2019 January 18
TB is a cell line derived from the cerebrospinal fluid sample of a patient with primary leptomeningeal melanomatosis. Our previous immunological and ultrastructural analysis revealed that TB cells differentiate towards a neuronal phenotype when grown in vitro up to 7 days in presence of 10 µM all-trans retinoic acid (RA). Recently, we reported that TB cells are sensitive to the cytotoxic effects of β-amyloid peptides, activating the cytosolic phospholipase A2. To date, it is not known if RA, in addition to inducing morphological changes, also causes functional modification in TB cells, by regulating voltage-gated ionic currents. To this purpose, we performed electrophysiological characterization of undifferentiated (TB) and differentiated (RA-TB) cells by means of whole-cell patch clamp recordings. Upon depolarizing stimuli, both groups displayed voltage-gated K+ outward currents of similar amplitude. By contrast, the low amplitude voltage-gated Na+ currents recorded in undifferentiated TB cells were largely up-regulated by RA exposure. This current was strongly reduced by TTX and lidocaine and completely abolished by removal of extracellular sodium. Furthermore, treatment with RA caused the appearance of a late-onset inward current carried by Ca2+ ions in a subpopulation of TB cells. This current was not affected by removal of extracellular Na+ and was completely blocked by Cd2+ , a broad-spectrum blocker of Ca2+ currents. Altogether, our results indicate that RA-differentiation of TB cells induces functional changes by augmenting the amplitude of voltage-gated sodium current and by inducing, in a subpopulation of treated cells, the appearance of a voltage-gated calcium current.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app