Add like
Add dislike
Add to saved papers

Learning a discriminant graph-based embedding with feature selection for image categorization.

Graph-based embedding methods are very useful for reducing the dimension of high-dimensional data and for extracting their relevant features. In this paper, we introduce a novel nonlinear method called Flexible Discriminant graph-based Embedding with feature selection (FDEFS). The proposed algorithm aims to classify image sample data in supervised learning and semi-supervised learning settings. Specifically, our method incorporates the Manifold Smoothness, Margin Discriminant Embedding and the Sparse Regression for feature selection. The weights add ℓ2,1 -norm regularization for local linear approximation. The sparse regression implicitly performs feature selection on the original features of data matrix and of the linear transform. We also provide an effective solution method to optimize the objective function. We apply the algorithm on six public image datasets including scene, face and object datasets. These experiments demonstrate the effectiveness of the proposed embedding method. They also show that proposed the method compares favorably with many competing embedding methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app