Add like
Add dislike
Add to saved papers

Response of pre-crystallized CAD/CAM zirconia-reinforced lithium silicate glass ceramic to cyclic nanoindentation.

This paper reports on a cyclic nanoindentation approach of a pre-crystallized zirconia-reinforced lithium silicate glass ceramic (ZLS) to understand its material behavior associated with its machinability in dental CAD/CAM diamond abrasive milling. The material response to the cyclic nanoindentation using a Berkovich diamond tip was quantitatively determined in terms of the indentation contact hardness, elastic modulus, elasticity and plasticity for each loading cycle at peak loads of 2.5-10 mN. The cyclic load-displacement curves at different load levels indicate discrete discontinuities and hysteresis loops, which might have arisen from viscoelasticity behavior. Material properties degraded with an increasing number of loading cycles due to the mechanical softening which may facilitate machining in dental CAD/CAM milling. Elastic and plastic displacements and indentation energies revealed the pre-crystallized ZLS experiences predominantly elastic deformation and thus has a high capacity to retain its structure and shape. Furthermore, elastic energy dominated cyclic loading led to pseudoelasticity due to plastic strain accumulation. In situ scanning probe microscopy (SPM) images of cyclic indentation imprints reveal the fracture-free plastic deformation of the pre-crystallized ZLS under cyclic nanoindentation conditions. The outcomes of this study provide the mechanics model of diamond milling of the pre-crystallized ZLS due to the cyclic loading nature of dental CAD/CAM abrasive processing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app