Add like
Add dislike
Add to saved papers

Tensile behavior and structural characterization of pig dermis.

Acta Biomaterialia 2019 January 17
Skin, the outermost layer of the body, fulfills a broad range of functions, protecting internal organs from damage and infection, while regulating the body's temperature and water content via the exchange of heat and fluids. It must be able to withstand and recover from extensive deformation and damage that can occur during growth, movement, and potential injuries. A detailed investigation of the evolution of the collagen architecture of the dermis as a function of deformation is conducted, which reveals new aspects that help us to understand the mechanical response of skin. Juvenile pig is used as a model material because of its similarity to human skin. The dermis is found to have a tridimensional woven structure of collagen fibers, which evolves with deformation. After failure, we observe that the fibers have straightened and aligned in the direction of tension. The effects of strain-rate change, cyclic loading, stress relaxation, and orientation are quantitatively established. Digital image correlation techniques were implemented to quantify skin's anisotropy; measurements of the Poisson ratio are reported. This is coupled with transmission electron microscopy which enables obtaining quantitative strain parameters evaluated through the orientation and curvature of the collagen fibers and their changes, for the first time in all three dimensions of the tissue. A model experiment using braided human hair in tension exhibits a similar J-curve response to skin, and we propose that this fiber configuration is at least partially responsible for the monotonic increase of the tangent modulus of skin with strain. The obtained results are intended to serve as a basis for structurally-based models of skin. STATEMENT OF SIGNIFICANCE: Our study reveals a new aspect of the dermis: it is comprised of a tridimensional woven structure of collagen fibers, which evolves with deformation. This is enabled by primarily two techniques, transmission electron microscopy on three perpendicular planes and confocal images with second harmonic generation fluorescence of collagen, captured at different intervals of depth. After failure, the fibers have straightened and aligned in the direction of tension. Digital image correlation techniques were implemented to quantify skin's anisotropy; measurements of the Poisson ratio are reported. A model experiment using braided human hair in tension exhibits a similar J-curve response to skin, and we propose that this fiber configuration is at least partially responsible for the monotonic increase of the tangent modulus of skin with strain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app