Add like
Add dislike
Add to saved papers

Effective stacking and transplantation of stem cell sheets using exogenous ROS-producing film for accelerated wound healing.

Acta Biomaterialia 2019 January 17
Extensive skin loss caused by burns or diabetic ulcers may lead to major disability or even death. Therefore, cell-based therapies that enhance skin regeneration are clinically needed. Previous approaches have been applied the injections of cell suspensions and the implantation of biodegradable three-dimensional scaffolds seeded cells. However, these treatments have limits due to poor localization of the injected cells and insufficient delivery of oxygen and nutrients to cells. Recently, cell sheet-based tissue engineering has been developed to transplant cell sheets, which are cell-dense tissues without scaffolds. Because cell density is one of the important factors for improving the therapeutic effect of cell transplantation, transplanting layered cell sheet constructs can promote the recovery of tissue function and tissue regeneration compared with a single cell sheet. Thus, this study designed ROS-induced cell sheet stacking method with newly fabricated hematoporphyrin-incorporated polyketone film (Hp-PK film) to enhance cell sheet delivery efficiency and application in wound healing. We have demonstrated the therapeutic effect of a multi-layered mesenchymal stem cell sheets onto a full-thickness wound defect in nude mice. Consequentially, three-layered cell sheets transplanted and stacked by ROS-induced method promoted angiogenesis and skin regeneration at the wound site. Thus, our strategy based on Hp-PK film, which allows for easy stacking and transplantation of cell sheets, could be applied to enhance tissue regeneration. STATEMENT OF SIGNIFICANCE: We herein report exogenous ROS-induced cell sheet stacking method with newly fabricated hematoporphyrin-incorporated polyketone film (Hp-PK film) to enhance cell sheet transplantation efficiency and application in wound healing. Although there are several ways to stack-up cell sheets, all of these methods have limitations in transplanting the cell sheet directly to the target site. The method is simple and takes a relatively short time compared to previously reported methods for stacking and transplanting cell sheets. Thus, our study will provide a scientific impact because the method of applying exogenous ROS generated from Hp-PK film on cell detachment can transplant the cell sheet through a process of putting a cell sheet-cultured film on the lesion, irradiating with light, and then removing only the film.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app