Add like
Add dislike
Add to saved papers

Molecular interactions and mutational impact upon rhodopsin (G90→D90) for hindering dark adaptation of eye: A comparative structural level outlook for signaling mechanism in night blindness.

Mutation Research 2019 January 5
For night blindness, a detailed structural exploration of the interactions among G-protein receptor rhodopsin, transducin and arrestin was performed. Rhodopsin is responsible for dim light vision while a point mutation (G90→D90) results in an adverse change in its photo-transduction. The validated 3D models of the three proteins were utilized, and upon mutation and interactions, rhodopsin attained higher stability (evaluated through thermodynamic energy calculations, electrostatic surface potential and solvent accessible area), thereby participating strongly with transducin. Conformational switches in mutated rhodopsin also depicted a firm conformation with few 310 helices accompanied by increased percentage of pure α-helices and sheets. All evaluations were corroborated through paired T-tests. Glu33 (glycosylated unit in the N-terminal zone) of rhodopsin plays a chief role in the overall interaction pattern. Arg69 and Glu33 from wild-type rhodopsin participated in ionic interactions, while the latter set of ionic interaction remained preserved even after mutation. Cys323 (C-terminal residue) and Arg69 formed H-bonds from the wild-type rhodopsin. Cys323 exceptionally supports cellular signaling pattern in the non-mutated situation and for the non-sufferers of night-blindness. Ser297 and Tyr43 from mutated rhodopsin reside in helices and interact with Thr32 of transducin, preserving the steady conformation in activated interacted state, even in the dark. Ser297 lies adjoined to Lys296 (retinal attachment site), which resides in NPXXY motif (an "activation switch" for signal transduction). Thus, the molecular facet for involvement of photo-transduction, which holds a paramount zone in ophthalmology, was dealt with. This might instigate the future prospect for drug discovery to prevent such mutations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app