Add like
Add dislike
Add to saved papers

Dexmedetomidine protects against lipopolysaccharide-induced early acute kidney injury by inhibiting the iNOS/NO signaling pathway in rats.

Increasing evidence has demonstrated that dexmedetomidine (DEX) possesses multiple pharmacological actions. Herein, we explored the protective effect and potential molecular mechanism of DEX on lipopolysaccharide (LPS)-induced early acute kidney injury (AKI) from the perspective of antioxidant stress. We found that DEX (30 μg/kg, i.p.) ameliorated the renal dysfunction and histopathological damage (tubular necrosis, vacuolar degeneration, infiltration of inflammatory cells and cast formation) induced by LPS (10 mg/kg). DEX also attenuated renal oxidative stress remarkably in LPS-induced early AKI, as evidenced by reduction in production of reactive nitrogen species, decreasing malondialdehyde levels, as well as increasing superoxide dismutase activity and glutathione content. DEX prevented activator protein-1 translocation, inhibited phosphorylation of I-kappa B (IκB) and activation of nuclear factor kappa B (NF-κB) in LPS-induced early AKI, as assessed by real-time quantitative polymerase chain reaction and protein levels of c-Jun, c-Fos, IκB and NF-κB. Notably, DEX pretreatment had the same effect as intraperitoneal injection of an inhibitor of inducible nitric oxide synthase inhibitor (1400W; 15 mg/kg), and inhibited the activity of renal inducible nitric oxide synthase (iNOS) and decreased the expression of iNOS mRNA and NO production. However, the protective effect of DEX on LPS-induced early AKI was reversed by the alpha 2 adrenal receptor (α2 -AR) inhibitor atipamezole, whereas the imidazoline receptor inhibitor idazoxan did not. Taken together, DEX protects against LPS-induced early AKI in rats by inhibiting the iNOS/NO signaling pathway, mainly by acting on α2 -ARs instead of IRs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app