Add like
Add dislike
Add to saved papers

Replicative senescence of human dermal fibroblasts affects structural and functional aspects of the golgi apparatus.

Experimental Dermatology 2019 January 20
It is well recognized that the world population is aging rapidly. Therefore, it is important to understand aging processes at the cellular and molecular levels to predict the onset of age-related diseases and prevent them. Recent research has focused on the identification of aging biomarkers, including those associated with the properties of the Golgi apparatus. In this context, Golgi-mediated glycosylation of proteins has been well characterized. Additionally, other studies show that the secretion of many compounds, including pro-inflammatory cytokines and extracellular matrix degrading enzymes, is modified during aging, resulting in physical and functional skin degradation. Since the Golgi apparatus is a central organelle of the secretory pathway, we investigated its structural organization in senescent primary human dermal fibroblasts using confocal and electron microscopy. In addition, we monitored the expression of Golgi-related genes in the same cells. Our data showed a marked alteration in the Golgi morphology during replicative senescence. In contrast to its small and compact structure in non-senescent cells, the Golgi apparatus exhibited a large and expanded morphology in senescent fibroblasts. Our data also demonstrated that the expression of many genes related to Golgi structural integrity and function was significantly modified in senescent cells, suggesting a relationship between Golgi apparatus function and aging. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app