Add like
Add dislike
Add to saved papers

Molecular characterization and expression patterns of Phenacoccus solenopsis (Hemiptera: Pseudococcidae) heat shock protein genes and their response to host stress.

As a polyphagous insect, little is known at the molecular level about the effects of different host plants on physiological changes in Phenacoccus solenopsis. In this study, four heat shock protein (Hsp) genes (PsHsp60, PsHsp70, PsHsp90, and PsHsp20.7) were identified from the transcriptome of P. solenopsis. Analysis of Hsp expression levels revealed significant differences in Hsp gene expression levels in P. solenopsis fed on different host plants. In host conversion tests, the expression levels of PsHsp90 and PsHsp60 were upregulated after transfer of second instar nymphs from tomato to cotton. The expression levels of PsHsp70 and PsHsp20.7 were, respectively, significantly upregulated at 9 and 48 hr after transfer from tomato to Hibiscus. The results of this study aid molecular characterization and understanding of the expression patterns of Hsp genes during different developmental stages and host transfer of P. solenopsis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app