Add like
Add dislike
Add to saved papers

β-catenin-coordinated lncRNA MALAT1 up-regulation of ZEB-1 could enhance the telomerase activity in HGF-mediated differentiation of bone marrow mesenchymal stem cells into hepatocytes.

OBJECTIVE: To investigate role of β-catenin and lncRNA MALAT1/miR-217 axis to converge into the regulation of ZEB-1 in hepatocyte growth factor (HGF)-induced hepatocytes differentiated from bone marrow mesenchymal stem cells (BM-MSCs).

METHODS: BM-MSCs were isolated and HGF was used to induce the differentiation of BM-MSCs into hepatocytes. HSC-T6 cells, BRL-3 A cells and differentiated BM-MSCs were treated by lipopolysaccharide(LPS). shRNAs were used to silence β-catenin and recombinant plasmids were used to over-express ZEB1. Measurement of cell viability was conducted using MTT assay and Hoechst 33342 staining. RNA immunoprecipitation (RIP) assay was used to determine binding of miR-217-3p and MALAT1.

RESULTS: BM-MSCs successfully differentiated into hepatocytes by HGF treatment. Expression of β-catenin, ZEB-1 and TERT was up-regulated to a higher level in hepatocytes differentiated from BM-MSCs than HSC-T6 cells and BRL-3 A cells after LPS stimulation. When β-catenin was knocked down in all cell lines, expression of β-catenin, ZEB-1 and TERT was significantly decreased as well as telomerase activity. While when ZEB1 was over-expressed, expression of TERT and telomerase activity was all significantly up-regulated. In hepatocytes differentiated from BM-MSCs, miR-217 was down-regulated and lncRNA MALAT1 was up-regulated. RIP analysis showed MALAT1 was physically associated with miR-217 and might function in the regulation of ZEB-1, further enhancing the expression of TERT so as to augment telomerase activity.

CONCLUSION: We successfully used HGF to mediate differentiation of BM-MSCs into hepatocytes, and found that β-catenin-coordinated MALAT1/miR-217 axis could up-regulate expression of ZEB-1 and further enhanced the telomerase activity through regulation of TERT in BM-MSCs differentiating into hepatocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app