Add like
Add dislike
Add to saved papers

Thermal characteristics and product formation mechanism during pyrolysis of penicillin fermentation residue.

Bioresource Technology 2019 January 10
This work studied thermal characteristics and product formation mechanism during pyrolysis of penicillin fermentation residue (PR). Results showed that PR pyrolysis proceeded in four stages. The kinetic triplet of each stage was calculated using Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose, and integral master-plot methods. The kinetic model for stage 1 was the three-dimensional diffusion model, the simple reaction order model for stage 2 and stage 4, and the nucleation-growth model for stage 3. FTIR analysis suggested that the intensities of absorption peaks of NH, CO, CH, CN, and CO in chars weakened gradually with increasing temperature, corresponding to the production of CH4 , CO, NH3 , and HCN. GC-MS results indicated that the high protein content in PR resulted in a high fraction of nitrogenated compounds (amides and amines, nitriles, and N-heterocyclic species) in bio-oil. The formation mechanism of these compounds was discussed. Besides, bio-oil also contained large quantities of oxygenated compounds and a few hydrocarbons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app