Add like
Add dislike
Add to saved papers

Coupling multiscale within-host dynamics and between-host transmission with recovery (SIR) dynamics.

Mathematical Biosciences 2019 January 16
Multiscale models that link within-host infection to between-host transmission are valuable tools to progress understanding of viral infectious diseases. In this paper, we present two multiscale models that couple within-host infection to a susceptible-infected-recovered (SIR) model. A disease-induced transmission rate bridges the scales from within to between-host. Our stability analysis on the first model (influenza infection) reveals two equilibrium points for the SIR model that describe endemic scenarios where both susceptible and infected cases maintain nonzero population sizes. Consequently, the between-host system has two bifurcations determined by the corresponding basic reproduction number of the within-host and the size of the infected population at the interior equilibrium point. Analysis on the second model (Ebola infection) reveals the limited transient inhibitory effect of antibodies on viral replication, which influences the time window from infection to a potential outbreak. Simulations numerically illustrate our results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app