Add like
Add dislike
Add to saved papers

Sliding motion compensated low-rank plus sparse (SMC-LS) reconstruction for high spatiotemporal free-breathing liver 4D DCE-MRI.

Liver dynamic contrast-enhanced MRI (DCE-MRI) requires high spatiotemporal resolution and large field of view to clearly visualize all relevant enhancement phases and detect early-stage liver lesions. The low-rank plus sparse (L + S) reconstruction outperforms standard sparsity-only-based reconstruction through separation of low-rank background component (L) and sparse dynamic components (S). However, the L + S decomposition is sensitive to respiratory motion so that image quality is compromised when breathing occurs during long time data acquisition. To enable high quality reconstruction for free-breathing liver 4D DCE-MRI, this paper presents a novel method called SMC-LS, which incorporates Sliding Motion Compensation into the standard L + S reconstruction. The global superior-inferior displacement of the internal abdominal organs is inferred directly from the undersampled raw data and then used to correct the breathing induced sliding motion which is the dominant component of respiratory motion. With sliding motion compensation, the reconstructed temporal frames are roughly registered before applying the standard L + S decomposition. The proposed method has been validated using free-breathing liver 4D MRI phantom data, free-breathing liver 4D DCE-MRI phantom data, and in vivo free breathing liver 4D MRI dataset. Results demonstrated that SMC-LS reconstruction can effectively reduce motion blurring artefacts and preserve both spatial structures and temporal variations at a sub-second temporal frame rate for free-breathing whole-liver 4D DCE-MRI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app