Add like
Add dislike
Add to saved papers

Animal models for modeling pancreatic cancer and novel drug discovery.

INTRODUCTION: Despite the introduction of novel therapeutic regimens for advanced stages of pancreatic cancer, long-term survival and overall outcome for patients are still very poor. Suitable small animal models are a prerequisite for better understanding of underlying pathophysiology and for translational studies designed to uncover novel therapeutic targets and to evaluate therapy regimens on a preclinical level. Areas covered: Genetically engineered mouse models as well as syngenic and xenotransplantation models are summarized and critically discussed with respect to their value for pancreatic cancer translational research. Expert opinion: Mouse models of pancreatic cancer represent a valuable tool for translational studies and are indispensable in order to develop novel potent drugs against pancreatic cancer. More complex genetically engineered mouse models are being developed to cover the complex genomic alterations found in human pancreatic cancers and to enable studies correlating genotype with response to specific therapeutic interventions. Another promising area of research in this field is the refinement and further development of humanized patient-derived xenograft models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app