Journal Article
Randomized Controlled Trial
Add like
Add dislike
Add to saved papers

The effect of torsional shoe sole stiffness on knee moment and gross efficiency in cycling.

Altering torsional stiffness of cycling shoe soles may be a novel approach to reducing knee joint moments and overuse injuries during cycling. We set out to determine if the magnitude of three-dimensional knee moments were different between cycling shoe soles with different torsional stiffnesses. Eight trained male cyclists cycled at 90% lactate threshold power output in one of two cycling shoe conditions in a randomized crossover design. The shoe sole was considered torsionally flexible (FLEX) compared to a relatively stiffer (STIFF) sole. Gross efficiency (GE) and knee joint moments were quantified. No significant effect of shoe condition was seen in GE (21.4 ± 1.1% and 20.9 ± 1.6% for FLEX and STIFF, respectively, P = 0.12), nor in three-dimensional knee moments. 4 of the 8 subjects had reduced knee moments in at least 2 of the 3 moment directions. These "responders" were significantly shorter (1.73 ± 0.02 m vs 1.81 ± 0.04 m, P = 0.017) and had a higher relative maximal aerobic power (MAP) (4.6 ± 0.3 W∙kg-1 vs 3.9 ± 0.3 W∙kg-1, P = 0.024) compared to non-responders. These results suggest that certain shoe characteristics may influence certain individuals differently because these participants belong to different "functional groups"; certain individuals may respond positively to FLEX, while others may not. Further studies should test this proposed hypothesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app