Add like
Add dislike
Add to saved papers

Low-field 1 H-NMR spectroscopy for compositional analysis of multicomponent polymer systems.

Analyst 2019 January 19
The accurate characterization of relative composition in multicomponent polymer systems such as statistical copolymers, block copolymers, and polymer blends is critical to understanding and predicting their behavior. Typically, polymer compositional analysis is performed using 1H Nuclear Magnetic Resonance (NMR) Spectroscopy which provides quantitative chemical group concentrations without prior calibration. This utility has led 1H NMR spectroscopy to become a routine method for the molecular characterization of polymers. Unfortunately, due to cost constraints, NMR spectroscopy is rarely used for routine materials verification such as quality control in industrial settings that commonly lack on-site advanced instrumentation facilities. Recently, low-field or so-called benchtop NMR spectrometers have been introduced commercially as a less expensive alternative to higher field, and costlier, NMR spectrometers. Here, we examine the capability of a low-field 1H NMR spectrometer (60 MHz) for the compositional analysis of select block copolymers and polymer blends by direct comparison with results obtained using a 400 MHz NMR spectrometer. In the analysis of high 1,4-content polyisoprene we find quantitative agreement between the 400 and 60 MHz spectrometers. Furthermore, quantitative agreement is demonstrated for compositional analysis of commercially available poly(styrene-b-isoprene-b-styrene) (SIS) and poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymers and polymer blends of polystyrene/polyisoprene (PS/PI) and polystyrene/poly(methyl methacrylate) (PS/PMMA) that also serve as proxies for statistical and block copolymer analysis. Overall, we find low-field 1H NMR spectroscopy to be an accessible, powerful and useful tool for polymer characterization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app