Add like
Add dislike
Add to saved papers

rs187960998 polymorphism in miR-211 prevents development of human colon cancer by deregulation of 3'UTR in CHD5.

Background: Previous research indicated that overexpression of miRNA-211 could promote colorectal cancer cell growth by targeting tumor suppressive gene Chromodomain-helicase-DNA-binding protein 5 (CHD5) in human colon cancer (CC). Moreover, the function of the single-nucleotide polymorphism (SNP) located in the mature region of miR-211 has not been investigated. In this study, we found that SNP of rs187960998 in miR-211 was involved in the occurrence of CC by acting as a tumor suppressor by mal-regulation of its target gene CHD5 .

Materials and methods: The genotype of total 685 CC patients was detected by real-time PCR, the proliferation of CC cell lines with different genotypes of miR-211 was determined by Cell Counting Kit-8, cell invasion evaluated by transwell and the activity of the CHD5 promoter in CC cell lines transfected with different miR-211 was determined by luciferase assay. The expression of CHD5 in CC patients was determined by the immunohistochemistry, and the relapse-free survival rate was analyzed by Kaplan-Meier analysis.

Results: C/T SNP of miR-211 could inhibit CC cell proliferation and invasion by upregulation of CHD5. And SNP in rs187960998 of miR-211 was associated with tumor size, metastasis and tumor differentiation in CC patients. Patients with CC genotype have significantly low CHD5 expression than the T-carrier, while no significant expression difference in miR-211 expression among different genotype subsets. Patients with CC genotype have significantly shorter postsurgery survival rate compared to the T-carrier.

Conclusion: rs187960998 in miR-211 was highly associated with a decreased risk of CC in the Chinese population by deregulating a tumor suppressive gene CHD5.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app