Add like
Add dislike
Add to saved papers

Estimating effects of graded white matter damage and binary tract disconnection on post-stroke language impairment.

NeuroImage 2019 January 15
Despite the critical importance of close replications in strengthening and advancing scientific knowledge, there are inherent challenges to conducting replications of lesion-based studies. In the present study, we conducted a close conceptual replication of a study (i.e., Hope et al., 2016) that found that fluency and naming scores in post-stoke aphasia were more strongly associated with a binary measure of structural white matter integrity (tract disconnection) than a graded measure (lesion load). Using a different sample of stroke patients (N = 128) and four language deficit measures (aphasia severity, picture naming, and composite scores for speech production and semantic cognition), we examined tract disconnection and lesion load in three white matter tracts that have been implicated in language processing: arcuate fasciculus, uncinate fasciculus, and inferior fronto-occipital fasciculus. We did not find any consistent evidence that binary tract disconnection was more strongly associated with language impairment over and above lesion load, though individual deficit measures differed with respect to whether lesion load or tract disconnection was the stronger predictor. Given the mixed findings, we suggest caution when using such indirect estimates of structural white matter integrity, and direct individual measurements (for example, using diffusion weighted imaging) should be preferred when they are available. We end by highlighting the complex nature of replication in lesion-based studies and offer some potential solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app