Add like
Add dislike
Add to saved papers

Hydrocarbonoclastic Ascomycetes to enhance co-composting of total petroleum hydrocarbon (TPH) contaminated dredged sediments and lignocellulosic matrices.

New Biotechnology 2019 January 15
Four new Ascomycete fungi capable of degrading diesel oil were isolated from sediments of a river estuary mainly contaminated by shipyard fuels or diesel oil. The isolates were identified as species of Lambertella, Penicillium, Clonostachys, and Mucor. The fungal candidates degraded and adsorbed the diesel oil in suspension cultures. The Lambertella sp. isolate displayed the highest percentages of oxidation of diesel oil and was characterised by the capacity to utilise the latter as a sole carbon source. This isolate showed extracellular laccase and Mn-peroxidase activities in the presence of diesel oil. It was tested for capacity to accelerate the process of decontamination of total petroleum hydrocarbon contaminated sediments, co-composted with lignocellulosic residues and was able to promote the degradation of 47.6% of the TPH contamination (54,074 ± 321 mg TPH/Kg of sediment) after two months of incubation. The response of the bacterial community during the degradation process was analysed by 16S rRNA gene meta-barcoding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app