Add like
Add dislike
Add to saved papers

Structural and functional characterisation of xylanase purified from Penicillium chrysogenum produced in response to raw agricultural waste.

Commercial interest in plant cell wall degrading enzymes (PCWDE) is motivated by their potential for energy or bioproduct generation that reduced dependency on non-renewable (fossil-derived) feedstock. Therefore, underlying work analysed the Penicillium chrysogenum isolate for PCWDE production by employing different biomass as a carbon source. Among the produced enzymes, three xylanase isoforms were observed in the culture filtrate containing sugarcane bagasse. Xylanase (PcX1) presenting 35 kDa molecular mass was purified by gel filtration and anion exchange chromatography. Unfolding was probed and analysed using fluorescence, circular dichroism and enzyme assay methods. Secondary structure contents were estimated by circular dichroism 45% α-helix and 10% β-sheet, consistent with the 3D structure predicted by homology. PcX1 optimally active at pH 5.0 and 30 °C, presenting t1/2 19 h at 30 °C and 6 h at 40 °C. Thermodynamic parameters/melting temperature 51.4 °C confirmed the PcX1 stability at pH 5.0. PcX1 have a higher affinity for oat spelt xylan, KM 1.2 mg·mL-1 , in comparison to birchwood xylan KM 29.86 mg·mL-1 , activity was inhibited by Cu+2 and activated by Zn+2 . PcX1 exhibited significant tolerance for vanillin, trans-ferulic acid, ρ-coumaric acid, syringaldehyde and 4-hydroxybenzoic acid, activity slightly inhibited (17%) by gallic and tannic acid.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app