Add like
Add dislike
Add to saved papers

Regulation of PTEN/AKT/FAK pathways by PPARγ impacts on fibrosis in diabetic nephropathy.

Renal tubular epithelial-to-mesenchymal transition (EMT) and tubulointerstitial fibrosis (TIF) are important pathological features of diabetic nephropathy (DN). However, the regulatory mechanism underlying EMT and TIF are still unclear. Previous studies showed that the decrease in the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was closely related to the aggravation of DN, but no published study showed how PTEN participated in the regulation of EMT and TIF. In this study, the rat proximal tubular epithelial cells (NRK52E) and C57BL mice and human kidney tissues were used as the research objects to investigate the mechanism underlying the regulatory effect of peroxisome proliferator-activated receptors γ (PPARγ) on PTEN and its influence on EMT and TIF, the regulation of PTEN's dual activity of lipid phosphatase/protein phosphatase by the serine threonine protein kinase B(AKT)/focal adhesion kinase (FAK) signaling pathway, and the role of PTEN in EMT and TIF. The results showed that PPARγ regulated the expression of PTEN at a transcriptional level and further regulated EMT and TIF. This dual activity could regulate the phosphorylation level of AKT and FAK and also affect FAK transcription. However, the 129 mutant of PTEN (PTEN-G129E) lost the lipid phosphatase activity, and its protein phosphatase activity was involved only in EMT and renal fibrosis through regulating FAK phosphorylation. This study systematically elucidated the role of PPARγ/PTEN/AKT/FAK signaling pathway in EMT and TIF during the pathogenesis of DN.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app