Add like
Add dislike
Add to saved papers

Mitochondrial Protein Turnover Is Critical for Granulosa Cell Proliferation and Differentiation in Antral Follicles.

Granulosa cell (GC) proliferation is essential for follicular development. FSH is a key factor in GC proliferation, and a continuous supply of high levels of ATP is necessary for cell proliferation. However, genes encoding proteins of the glycolytic pathways are poorly expressed in GCs. Therefore, we hypothesized that mitochondrial gene expression and protein synthesis play a primary role in ATP production during GC proliferation. To test this hypothesis, we performed an in vivo study of GCs collected from 23-day-old mice ovaries with or without equine chorionic gonadotropin (eCG) priming. It was observed that mitochondrial activity with membrane potential, expression of protein-coding genes ( Nd1-6 , Cytb , Atpase6,8 ) and transcription-related genes ( Polrmt , Tfam , Tfb2m ), copy number of mitochondrial (mt-)DNA, and protein synthesis were increased in GCs after 24 hours of eCG injection and mostly maintained elevated up to 48 hours. Therefore, we performed in vitro culture of GCs in DMEM medium supplemented with FSH, testosterone, and serum and containing different glucose concentrations with or without d-chloramphenicol (CRP) for 24 hours. GC proliferation and ATP production were observed to be independent of glucose concentration. Furthermore, FSH-induced mitochondrial activity with membrane potential, ATP content, BrdU-incorporated cell proliferation, intensity of mt-ND1 and mt-ND6 proteins, and expressions of marker genes for proliferation and differentiation were significantly decreased by CRP treatment. These results revealed the crucial role of mitochondria in the supply of ATP and the necessity of mitochondrial gene expression and protein synthesis in not only the proliferation but also the differentiation of GCs during follicular development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app