Add like
Add dislike
Add to saved papers

Differential expression of serum proteins in multiple myeloma.

The exact cause instigating multiple myeloma (MM) has not been fully elucidated, and the disease has a median survival of 6 months without any treatment. To identify potential biomarkers of MM, serum proteins reflecting alteration in their proteomes were analyzed in 6 patients with MM compared with 6 healthy controls using two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of flight mass spectrometry. The most notable differentially expressed proteins were validated by immunoblotting and changes in mRNA expression were evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A total of 11 differentially expressed protein spots were found. The expression levels of 7 proteins [Immunoglobulin heavy constant µ; proto-oncogene diffuse B-cell lymphoma (DBL2); 26S protease regulatory subunit 4 (P26s4); serum albumin; haptoglobin; and two unknown proteins with isoelectronic point (pI) of 6.41 and molecular weight of 35.4 kDa, and pI of 8.05 and molecular weight of 27.4 kDa, respectively] were downregulated in MM compared with healthy controls. Expression of gel actin-related protein 2/3 complex subunit 1A (ARPC1A); immunoglobulin heavy constant γ 1; fibrinogen α chain (FGA) fragment D; and zinc finger protein 70 were increased in serum of MM patients. Protein expressions of ARPC1A, FGA, P26s4 and DBL2 were measured by immunoblotting in an independent cohort of 12 MM patients and 10 healthy controls. RT-qPCR analysis demonstrated that ARPC1A expression only mimicked protein expression, whereas FGA, PSMC1 (encoding P26s4) and MCF2 (encoding DBL2) did not exhibit significant changes in mRNA expression between control and MM samples. These proteins represent putative serological biomarkers for patients with MM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app