Add like
Add dislike
Add to saved papers

Wavelength-tunable few-cycle pulses in visible region generated through soliton-plasma interactions.

Optics Express 2018 December 25
We numerically investigate the generation of wavelength-tunable few-cycle pulses in the visible spectral region through soliton-plasma interactions. We found that in a He-filled single-ring photonic crystal fiber (SR-PCF), soliton-plasma interactions could shift the optical spectra of pulses propagating in the fiber to shorter wavelengths. Through adjusting the single pulse energy launched into the fiber, the central wavelength of these blueshifting pulses could be continuously tuned over hundreds of nanometers, while maintaining a high energy conversion efficiency of >57%. Moreover, we observed that during the nonlinear pulse propagation in the SR-PCF, soliton self-compression effects enhanced the plasma density in the fiber at high pulse energies, which could modulate the phase-matching condition of ultraviolet (UV) dispersive wave (DW) generation. Furthermore, we employed the recently-developed model to study numerically the loss and dispersion of the SR-PCF in its resonant and anti-resonant spectral regions, and demonstrated the remarkable influence of the core-cladding resonance on the process of soliton-plasma interactions. The numerical results demonstrated here pave the way to develop wavelength-tunable, few-cycle light sources in the visible region, which may have considerable application potential in pump-probe spectroscopy and strong-field physics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app