Add like
Add dislike
Add to saved papers

Two annexin genes ZmANN33 and ZmANN35 encode proteins that function in cell membrane recovery during the germination of maize (Zea mays. L) seeds.

Plasma membrane (PM) recovery from impaired dry state is essential for seed germination, but its underlying mechanism remains yet unclear. In this study, we found that ZmANN33 and ZmANN35, two annexin genes in maize, encode proteins that participate in PM recovery during seed germination. The expression of both genes was up-regulated during seed germination and strongly repressed by chilling (either 15ºC or 5ºC) as compared with the normal temperature (25ºC). In addition, the increased membrane damage caused by chilling imbibition was correlated with suppressed ZmANN33/35 expression, while rapid recovery of their expression levels accompanied the rescue of the damaged membrane. Arabidopsis seedlings ectopically expressing ZmANN33 or ZmANN35 had longer seedling length than wild-type (WT) plants during the recovery period after three days of chilling stress, indicating the positive roles of these two gene products in plant's recovery from chilling injury. Moreover, these transgenic seedlings had lower lipid peroxidation and higher peroxidase activities than WT during the recovery period. Consistently, root cells of these transgenic seedlings had more intact PM after chilling stress, supporting the proposition that ZmANN33 and ZmANN35 contribute to the maintenance of PM integrity. The enhanced PM integrity is likely due to the accelerated exocytotic process after chilling stress. We also showed that both ZmANN33 and ZmANN35 localized in the cytosol near the plasma membrane. Thus, we conclude demonstrated that ZmANN33 and ZmANN35 play essential roles in membrane recovery during maize seed germination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app