Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Sirtuin 1 alleviates diabetic neuropathic pain by regulating synaptic plasticity of spinal dorsal horn neurons.

Pain 2019 May
Accumulating evidence has demonstrated that the enhanced synaptic plasticity of nociceptive interneurons in the spinal dorsal horn is the basis of central sensitization in neuropathic pain. Our previous results demonstrated that sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, alleviates neuropathic pain in type 2 diabetes mellitus rats. SIRT1 has also been reported to regulate synaptic plasticity in different brain neurons. However, the role of SIRT1 in synaptic plasticity of spinal dorsal horn neurons remains unknown. In this study, we found that in the spinal dorsal horn of diabetic neuropathic pain (DNP) rats and db/db mice, decreased SIRT1 expression was accompanied by enhanced structural synaptic plasticity. The levels of postsynaptic density protein 95 (PSD-95), growth-associated protein 43 (GAP43), and synaptophysin increased in the spinal dorsal horn of DNP rats and db/db mice and in high glucose-cultured primary spinal neurons. Upregulation of spinal SIRT1 by SIRT1 activator SRT1720 relieved pain behavior, inhibited the enhanced structural synaptic plasticity in rats and db/db mice with DNP, and decreased the levels of synapse-associated proteins in DNP rats, db/db mice, and high glucose-cultured spinal neurons. SIRT1-shRNA induced pain behavior and enhanced structural synaptic plasticity in normal rats and increased synapse-associated proteins levels in normal rats and spinal neurons. Intrathecal injection of AAV-Cre-EGFP into SIRT1 mice also induced pain behavior and enhanced synaptic plasticity of the spinal dorsal horn neurons. These results suggest that SIRT1 plays an important role in the progression of DNP by regulating synaptic plasticity of spinal dorsal horn neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app