Add like
Add dislike
Add to saved papers

Quantitative analysis of phenolic metabolites in Copaifera langsdorffii leaves from plants of different geographic origins cultivated under the same environmental conditions.

INTRODUCTION: Galloylquinic acid derivatives and flavonoids are the main phenolic metabolites found in Copaifera langsdorffii leaves (Leguminosae, Detarioideae), a medicinal plant with potential therapeutic application in the treatment of kidney stones. The factors that affect metabolite production in this plant species are not well understood but may include environmental and genetic factors.

OBJECTIVE: To quantify the variation in metabolite production over a 12-month period for 10 groups of C. langsdorffii cultivated under the same environmental conditions.

METHODS: Copaifera langsdorffii seeds were collected from 10 different regions in southeast, Brazil and grown in the same field. HPLC-UV was used to quantify nine galloylquinic acid derivatives and two flavonoids in leaf samples from mature trees. Climate data for humidity, radiation, precipitation and temperature were provided by the National Institute of Meteorology, Brazil. Multivariate analyses were performed to correlate chemical and environmental variables.

RESULTS: The overall effect of environmental factors on the production of phenolic metabolites was uniform among C. langsdorffii groups. Chemical variation between groups was present, but small, and probably due to differences in their genetics and physiology. Seasonal changes influenced the production of the major phenolic metabolites, with increases in temperature and radiation levels favouring metabolite production.

CONCLUSION: When C. langsdorffii trees are cultivated in the same environment, the production of the major secondary metabolites found in their leaves is very similar quantitatively, varying based on geographic location of original population and seasonal changes. This favours the standardisation of plant raw material for the production of a phytomedicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app