Add like
Add dislike
Add to saved papers

Minimally Invasive Microelectrode Biosensors Based on Platinized Carbon Fibers for in Vivo Brain Monitoring.

ACS Central Science 2018 December 27
The ability to monitor the chemical composition of brain interstitial fluid remains an important challenge in the field of bioanalytical chemistry. In particular, microelectrode biosensors are a promising resource for the detection of neurochemicals in interstitial fluid in both animals and humans. These biosensors can provide second-by-second temporal resolution and enzymatic recognition of virtually any redox or nonredox molecule. However, despite miniaturization of these sensors to 50-250 μm in diameter to avoid vascular and cellular injury, inflammation and foreign-body reactions still occur following their implantation. Here, we fabricated microelectrodes with platinized carbon fibers to create biosensors that have an external diameter that is less than 15 μm. Platinization was achieved with physical vapor deposition, and increased sensitivity to hydrogen peroxide and improved enzymatic detection were observed for these carbon fiber microelectrodes. When these devices were implanted in the brains of rats, no injuries to the parenchyma or brain blood vessels were detected. In addition, these microelectrodes provided different estimates of basal glucose, lactate, and oxygen concentrations compared to conventional biosensors. Induction of spreading depolarization in the cerebral cortex further demonstrated the greater sensitivity of our microelectrodes to dynamic neurochemical changes. Thus, these minimally invasive devices represent a major advance in our ability to analyze brain interstitial fluid.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app