Add like
Add dislike
Add to saved papers

Propagation Characteristics of Fasting Duodeno-Jejunal Contractions in Healthy Controls Measured by Clustered Closely-spaced Manometric Sensors.

Background/Aims: High-resolution methods have advanced esophageal and anorectal manometry interpretation but are incompletely established for intestinal manometry. We characterized normal fasting duodeno-jejunal manometry parameters not measurable by standard techniques using clustered closely-spaced recordings.

Methods: Ten fasting recordings were performed in 8 healthy controls using catheters with 3-4 gastrointestinal manometry clusters with 1-2 cm channel spacing. Migrating motor complex phase III characteristics were quantified. Spatial-temporal contour plots measured propagation direction and velocity of individual contractions. Coupling was defined by pressure peak continuity within clusters.

Results: Twenty-three phase III complexes (11 antral, 12 intestinal origin) with 157 (95% CI, 104-211) minute periodicities, 6.99 (6.25-7.74) minute durations, 10.92 (10.68-11.16) cycle/minute frequencies, 73.6 (67.7-79.5) mmHg maximal amplitudes, and 4.20 (3.18-5.22) cm/minute propagation velocities were recorded. Coupling of individual contractions was 39.1% (32.1-46.1); 63.0% (54.4-71.6) of contractions were antegrade and 32.8% (24.1-41.5) were retrograde. Individual phase III contractions propagated > 35 fold faster (2.48 cm/sec; 95% CI, 2.25-2.71) than complexes themselves. Phase III complexes beyond the proximal jejunum were longer in duration ( P = 0.025) and had poorer contractile coupling ( P = 0.025) than proximal complexes. Coupling was greater with 1 cm channel spacing vs 2 cm ( P < 0.001).

Conclusions: Intestinal manometry using clustered closely-spaced pressure ports characterizes novel antegrade and retrograde propagation and coupling properties which degrade in more distal jejunal segments. Coupling is greater with more closely-spaced recordings. Applying similar methods to dysmotility syndromes will define the relevance of these methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app