Add like
Add dislike
Add to saved papers

Fiber-optic simultaneous distributed monitoring of strain and temperature for an aircraft wing during flight.

Applied Optics 2018 December 21
We applied a fiber optic distributed simultaneous strain and temperature measurement technique to the structural monitoring of the main wing of a middle-sized passenger jet aircraft during flight. We used 40 10 cm long fiber Bragg gratings (FBGs), inscribed in a highly birefringent polarization-maintaining fiber. The FBGs were interrogated by optical frequency domain reflectometry, which could measure Bragg wavelength distributions at a sampling rate of 151 Hz. The simultaneous measurement technique could detect structural behaviors of the wing during flight under temperature-changing conditions. In addition, we discuss the effect of the polarization mode-coupling and the apparent position shift of the FBGs over time, which occurred during flight.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app