Add like
Add dislike
Add to saved papers

Degenerate four-wave mixing for measurement of magnetic field using a nanoparticles-doped highly nonlinear photonic crystal fiber.

Applied Optics 2019 January 11
A novel magnetic field sensor based on the degenerate four-wave mixing (DFWM) technique is theoretically proposed using a As2 S3 -core silica-cladding photonic crystal fiber (PCF). In order to enhance the sensitivity, we put forth a novel design of highly nonlinear PCF where the silica cladding is doped with either Au, Ag, or Al metallic nanoparticles. The effect of volume fraction of the nanoparticles within the cladding and the size of nanoparticles are considered as the control parameters in designing the magnetic field PCF sensor to obtain high sensitivity using this novel DFWM scheme. The PCF structure of the proposed sensor is optimized with the proposed pitch of 3 μm and air hole diameter of 2.78 μm. We consider a pumping pulsed laser light with a wavelength of 2100 nm in the mid-IR regime. It has been found that the optimized PCF with Al-SiO2 -cladding with small volume fraction and small nanoparticle size possess magnetic field sensitivity values of 2.74 and -0.058  nm/Oe for the Stokes and anti-Stokes gain lines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app