Add like
Add dislike
Add to saved papers

State-Space Representations of Deep Neural Networks.

Neural Computation 2019 January 16
This letter deals with neural networks as dynamical systems governed by finite difference equations. It shows that the introduction of k -many skip connections into network architectures, such as residual networks and additive dense networks, defines k th order dynamical equations on the layer-wise transformations. Closed-form solutions for the state-space representations of general k th order additive dense networks, where the concatenation operation is replaced by addition, as well as k th order smooth networks, are found. The developed provision endows deep neural networks with an algebraic structure. Furthermore, it is shown that imposing k th order smoothness on network architectures with d -many nodes per layer increases the state-space dimension by a multiple of k , and so the effective embedding dimension of the data manifold by the neural network is k · d -many dimensions. It follows that network architectures of these types reduce the number of parameters needed to maintain the same embedding dimension by a factor of k 2 when compared to an equivalent first-order, residual network. Numerical simulations and experiments on CIFAR10, SVHN, and MNIST have been conducted to help understand the developed theory and efficacy of the proposed concepts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app