Add like
Add dislike
Add to saved papers

Scalable and Flexible Unsupervised Feature Selection.

Neural Computation 2019 January 16
Recently, graph-based unsupervised feature selection algorithms (GUFS) have been shown to efficiently handle prevalent high-dimensional unlabeled data. One common drawback associated with existing graph-based approaches is that they tend to be time-consuming and in need of large storage, especially when faced with the increasing size of data. Research has started using anchors to accelerate graph-based learning model for feature selection, while the hard linear constraint between the data matrix and the lower-dimensional representation is usually overstrict in many applications. In this letter, we propose a flexible linearization model with anchor graph and ℓ 21 -norm regularization, which can deal with large-scale data sets and improve the performance of the existing anchor-based method. In addition, the anchor-based graph Laplacian is constructed to characterize the manifold embedding structure by means of a parameter-free adaptive neighbor assignment strategy. An efficient iterative algorithm is developed to address the optimization problem, and we also prove the convergence of the algorithm. Experiments on several public data sets demonstrate the effectiveness and efficiency of the method we propose.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app