Add like
Add dislike
Add to saved papers

Catalysts Confined in Programmed Framework Pores Enable New Transformations and Tune Reaction Efficiency and Selectivity.

Controlling chemical reactions in porous heterogeneous catalysts is a tremendous challenge because of the difficulty in producing uniform active sites that can be tuned with precision. However, analogous to enzymes, when a catalytic pocket provides complementary close contacts and favorable intermolecular interactions with the reaction participants, the reaction efficiency and selectivity may be tuned. Here, we report an isoreticular family of catalysts based on the multicomponent metal-organic framework MUF-77. The microenvironment around the site of catalysis was successfully programmed by introducing functional groups (modulators) to the organic linkers at sites remote from the catalytic unit. The framework catalysts produced in this way exhibit several unique features, including the simultaneous enhancement of both reactivity and stereochemical selectivity in aldol reactions, the ability to catalyze Henry reactions that cannot be accomplished by homogeneous analogs, and discrimination between different reaction pathways (Henry versus aldol) that compete for a common substrate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app