Add like
Add dislike
Add to saved papers

An Alginate Hydrogel Modified with a Ligand Interacting with α3β1 Integrin Receptor Promotes the Differentiation of 3D Neural Spheroids towards Oligodendrocytes in vitro.

In this study, we established a long-term three-dimensional (3D) culture system by using integrin ligand modified alginate hydrogels to encapsulate and differentiate neural progenitor cells (NPCs) towards oligodendrocyte (OL) lineage cells. The porosity of the hydrogel was optimized by varying the alginate concentrations and then characterized by scanning electronic microscopy (SEM). The Surface Plasmon Resonance (SPR) test was used to confirm the ligand-integrin interactions indicating adherence between the NPC surfaces and the hydrogels. Following encapsulation in the hydrogels, both mouse and human NPC sphere cultures could be maintained up to 90 days. Mouse NPC spheres were differentiated into viable neurons, astrocytes and mature OLs by day 60 in all groups whereas human NPC spheres were differentiated into neurons and later into GFAP positive astrocytes and O4 positive pre-OL within 90 days. The species difference in the timeline of OL development between mouse and human was reflected in this system. The ligand LXY30 interacting with the α3β1 integrin receptor was more effective in promoting the differentiation of hNPCs to OL lineage cells compared with the ligand LXW64 interacting with the αvβ3 integrin receptor, hyaluronic acid interacting with CD44 receptor or without any ligand. This study is the first to differentiate O4+ pre-OLs from hNPCs in a LXY30-α3β1 (integrin-ligand) modified alginate 3D hydrogel culture. This 3D platform could serve as a valuable tool in disease modeling, drug discovery and NPC transplantation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app