Add like
Add dislike
Add to saved papers

Single-layer Ag 2 S: A two-dimensional bi-directional auxetic semiconductor.

Nano Letters 2019 January 16
Two-dimensional auxetic materials have attracted considerable attention due to their potential applications in medicine, tougher composites, defense and so on. However, they are scare especially at low dimension, as auxetic materials are mainly realized in engineered materials and structures. Here using first-principles calculations, we identify a compelling two-dimensional auxetic material, single-layer Ag2 S, which possesses large negative Poisson's ratios in both in-plane and out-of-plane directions, but anisotropic ultra-low Young's modulus. Such a coexistence of simultaneous negative Poisson's ratios in two directions is extremely rare, which is mainly originated from its particular zigzag-shaped buckling structure. In addition, contrary to the previously known metal-shrouded single-layer M2 X (M = metal, X = nonmetal), single-layer Ag2 S is the first nonmetal-shrouded M2 X. Electronic calculations show that it is an indirect-gap semiconductor with gap value of 2.83 eV, and it can be turned to be direct with strain. These intriguing properties make single-layer Ag2 S a promising auxetic material in electronics and mechanics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app