Add like
Add dislike
Add to saved papers

Enantiomers of Single Chirality Nanotube as Chiral Recognition Interface for Enhanced Electrochemical Chiral Analysis.

Analytical Chemistry 2019 January 16
Although separation of single-walled carbon nanotubes (SWCNTs) according to their helicity and handedness has been attracting tremendous interest recently, exploration of the left- and right-handed SWCNT enantiomers (defined as M and P) to chiral sensing still remains in the early stage. Here we presented a new electrochemical sensor for chiral discrimination, which for the first time amplified the chiral selection on the electrode surface based on the left- or right-handed semiconducting SWCNT enantiomers with (6, 5)-enriched chirality. The enantioselectivity was demonstrated by different peak current response to analyte enantiomers, observed in differential pulse voltammogram (DPV). Chiral distinguishing might be a result of the formation of an efficient chiral nanospace originating from the high purity of single enantiomer of (6, 5) SWCNT. The obtained chiral electrodes were also applied to determine the enantiomeric excess (ee) of DOPA. There was a good linear relationship between DPV peak currents and % ee of ʟ-DOPA. This study is the first example showing how the structure of chiral SWCNTs influences electrochemical chiral recognition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app