Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Retention of osteocytic micromorphology by sclerostin antibody in a concurrent ovariectomy and functional disuse model.

Prolonged mechanical unloading in bedridden patients and concurrent hormonal dysregulation represents the cause of one of the severest forms of osteoporosis, a condition for which there are very few efficacious interventions available to date. Sclerostin, a Wnt antagonist, acts as a negative regulator of bone formation. Sclerostin antibody (Scl-Ab)-mediated blockade of sclerostin can dramatically enhance bone formation and reduce bone resorption. This study was designed to investigate the therapeutic effect of the Scl-Ab on severe bone loss induced by concurrent mechanical unloading and estrogen deficiency in a hindlimb-suspended and ovariectomized rat model, and to study the cellular mechanisms underlying severe osteoporosis and Scl-Ab action. Unloading and ovariectomy resulted in severe loss of trabecular and cortical bone mass and strength; Scl-Ab can significantly counteract the deterioration of bone in unloaded and/or ovariectomized rats, with noticeably increased cortical bone formation. Scanning electron microscopy analysis revealed that unloading and ovariectomy lead to multiple morphological and structural abnormalities of osteocytes in cortical bone and the abnormalities were abolished by Scl-Ab administration. This study extends our previous conclusion that Scl-Ab represents a promising therapeutic approach for severe bone loss that occurs after being exposed to estrogen deficiency and prolonged mechanical unloading.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app