Add like
Add dislike
Add to saved papers

Direct Imaging of Protein-Specific Methylation in Mammalian Cells.

The abundant post-translational modification methylation alters a protein's function, stability, and/or localization. Its malfunctions are associated with severe diseases. To unravel protein methylation sites and their biological functions, chemical methylation reporters have been developed. However, until now their usage was limited to cell lysates. Here, we present the first generally applicable approach for imaging methylation of individual proteins in human cells, which is based on a combination of chemical reporter strategies, bioorthogonal ligation reactions, and Förster resonance energy transfer (FRET) detected by fluorescence lifetime imaging (FLIM) microscopy. Using this approach, we succeeded in imaging methylation of histone 4 and the non-histone proteins tumor suppressor p53, kinase Akt1, and transcription factor Foxo1 in two human cell lines. To further demonstrate its potential we visualized the localization-dependent methylation state of Foxo1 in the cellular context.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app