Add like
Add dislike
Add to saved papers

Developing of robust and high accurate ECG beat classification by combining Gaussian mixtures and wavelets features.

Electrocardiogram (ECG) beat classification is a significant application in computer-aided analysis and diagnosis technologies. This paper proposed a method to detect, extract informative features, and classify ECG beats utilizing real ECG signals available in the standard MIT-BIH Arrhythmia database, with 10,502 beats had been extracted from it. The present study classifies the ECG beat into six classes, normal beat (N), Left bundle branch block beat, Right bundle branch block beat, Premature ventricular contraction, atrial premature beat, and aberrated atrial premature, using Gaussian mixture and wavelets features, and by applying principal component analysis for feature set reduction. The classification process is implemented utilizing two classifier techniques, the probabilistic neural network (PNN) algorithm and Random Forest (RF) algorithm. The achieved accuracy is 99.99%, and 99.97% for PNN and RF respectively. The precision is 99.99%, and 99.98% for PNN and RF respectively. The sensitivity is 99.99%, and 99.81% for PNN and RF respectively, while the specificity is 99.97%, 99.96% for PNN and RF respectively. It has been shown that the combination of Gaussian mixtures coefficients and the wavelets features have provided a valuable information about the heart performance and can be used significantly in arrhythmia classification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app