Add like
Add dislike
Add to saved papers

IL-33 Is a Negative Regulator of Vaccine-Induced Antigen-Specific Cellular Immunity.

Journal of Immunology 2019 January 15
The cytokine IL-33 is a well-established inducer of Th2 responses. However, roles for IL-33 in promoting CD8, Th1, and T regulatory cell responses have also emerged. In this study, the role of IL-33 as a regulator of particulate vaccine adjuvant-induced Ag-specific cellular immunity was investigated. We found that polymeric nanoparticles surpassed alum in their ability to enhance Ag-specific CD8 and Th1 responses. IL-33 was a potent negative regulator of both CD8+ T cell and Th1 responses following i.m. vaccination with Ag and nanoparticles, whereas the cytokine was required for the nanoparticle enhancement in Ag-specific IL-10. In contrast to the effect on cellular immunity, Ab responses were comparable between vaccinated wild-type and IL-33-deficient mice. IL-33 did not compromise alum-induced adaptive cellular immunity after i.m. vaccination. These data suggest that IL-33 attenuates the induction of cellular immune responses by nanoparticulate adjuvants and should be considered in the rational design of vaccines targeting enhanced CD8 and Th1 responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app