Add like
Add dislike
Add to saved papers

Reevaluation of the Role of ERK3 in Perinatal Survival and Post-Natal Growth Using New Genetically-Engineered Mouse Models.

The physiological functions of the atypical MAP kinase ERK3 remain poorly characterized. Previous analysis of mice with a targeted insertion of the lacZ reporter in the Mapk6 locus ( Mapk6lacZ ) showed that inactivation of ERK3 in Mapk6lacZ mice leads to perinatal lethality associated with intrauterine growth restriction, defective lung maturation, and neuromuscular anomalies. To further explore the role of ERK3 in physiology and disease, we generated novel mouse models expressing a catalytically-inactive ( Mapk6KD ) or conditional ( Mapk6Δ ) allele of ERK3. Surprisingly, we found that mice devoid of ERK3 kinase activity or expression survive the perinatal period without any observable lung or neuromuscular phenotype. ERK3 mutant mice reached adulthood, were fertile and showed no apparent health problem. However, analysis of growth curves revealed that ERK3 kinase activity is ncessary for optimal post-natal growth. To gain insight into the genetic basis underlying the discrepancy in phenotypes of different Mapk6 mutant mouse models, we analyzed the regulation of genes flanking the Mapk6 locus by quantitative PCR. We found that expression of several Mapk6 neighboring genes is deregulated in Mapk6lacZ mice, but not in Mapk6KD or Mapk6Δ mutant mice. Our genetic analysis suggests that off-target effects of the targeting construct on local gene expression are likely to be responsible for the perinatal lethality phenotype of Mapk6lacZ mutant mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app