Add like
Add dislike
Add to saved papers

Mutations associated with change of susceptibility to lincosamides and/or macrolides in field and laboratory-derived Mycoplasma californicum strains in Japan, and development of a rapid detection method for these mutations.

Five mutations involved in changing of susceptibility to lincosamides and/or macrolides were investigated in field isolates of Mycoplasma californicum in Japan, and reconfirmed in laboratory-derived mutants. In addition, a quick and easy detection method for these mutations was established. Guanine at position 748 (Escherichia coli numbering) of the 23S rRNA gene (rrl) was shown to be involved with decreased susceptibility to 16-membered macrolides, and adenines at positions 2059 and 2062 of rrl were involved with decreased susceptibility to both lincosamides and macrolides. Both guanine at position 2576, and change from cytosine to thymine at position 2611 of rrl were found to be involved with decreased susceptibility to lincosamides, and the latter mutation also increased the susceptibility to erythromycin. These mutations were easily induced by several to approximately 30 passages in a medium containing the respective antimicrobial, but they did not return after their initial appearance. The melting curve analysis using hybridization probes revealed the existence of these mutations by the change in the melting curve shape and/or decrease in the melting peak temperature. The detection limit in milk samples with a somatic cell count up to 716 × 103 cell/mL was 133 cfu/mL, but an excessive increase in the cell count in milk or storage of the milk sample at chilling or freezing temperature decreased the sensitivity. This method requires only a few hours, so field veterinarians can make a same-day determination of susceptibility to macrolides and lincosamides, which are first-line antibiotics for bovine mycoplasmal mastitis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app