Add like
Add dislike
Add to saved papers

Use of a modified bacterial ghost lysis system for the construction of an inactivated avian pathogenic Escherichia coli vaccine candidate.

Vaccination is an effective strategy to prevent avian colibacillosis. Bacterial ghosts (BGs) are prepared by the controlled expression of the phiX174 gene E, which mediates the lysis of Gram-negative bacteria. Staphylococcal nuclease A may be used to produce BGs for further inactivation of host bacteria and elimination of residual genetic material. In this study, the double promoter lysis plasmid (pUC19-ΔcI857-E-rrnB-pL-SN) was successfully constructed and BGs were prepared at 37 °C. The cleavage efficiency of Escherichia coli BGs was 99.9%. Furthermore, to evaluate the immunological effects of the BG vaccines in chickens, a BG vaccine was prepared using the serotype O2 avian pathogenic Escherichia coli deletion strain (DE17ΔluxSΔaroA). The results showed that the BG vaccine was able to achieve over 90% immune protection against virulent challenge using the same serotype O2 strain (DE17 or CE35), while it showed poor cross-protection against serotypes O1 and O78 (data not shown). The enzyme-linked immunosorbent assay results showed that the antibody levels in the immunized groups were higher than in the control group (p < 0.05), with the BG group being the highest. The cytokine tests showed that the levels of interferon-γ in the BG immune group were higher than in the phosphate-buffered saline (PBS) control group (non-immune) (p < 0.01) and the formalin-inactivated vaccine immune group (p < 0.05), and the levels of tumor necrosis factor-α in the BG group were higher than in the formalin-inactivated vaccine (p > 0.05) and the PBS control groups (p < 0.05). In addition, pathological analysis revealed that the PBS control group showed typical fibrinous pericarditis and perihepatitis, whereas the immune group showed no obvious pathological changes. In summary, our findings provide a new strategy for the prevention and control of avian colibacillosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app