Add like
Add dislike
Add to saved papers

Application of rice (Oryza sativa L.) root endophytic diazotrophic Azotobacter sp. strain Avi2 (MCC 3432) can increase rice yield under green house and field condition.

Use of plant-associated beneficial microbes, especially endophytes are getting popular day by day as they occupy a relatively privileged niche inside different plant tissues with lesser competition for food and shelter than rhizosphere. The effects of different physical factors like temperature, rainfall, and seasonal variation and UV radiation on plant growth promoting endophytic communities are less pronounced than those on the rhizospheric and phylloplane microbes. This present work has been compromised with further utilization of an indigenous rice (Oryza sativa L.) root endophytic Azotobacter sp. strain Avi2 (MCC 3432) (AzA) as a bio-formulation for sustainable rice production based on several physiological parameters (plant height, root length/weight, leaf area, yield, chlorophyll contain), in-vitro comparative plant growth promoting assays, greenhouse and field experiments (dry and wet season). Treatments with AzA exhibited higher yield as well as maximal chlorophyll fluorescence (Fm) of flag leaves in flowering and grain filling stages indicating higher photosynthetic rates. Scanning electron microscopic image of rice roots demonstrated accumulation of bacterial biofilm at the junction of primary and lateral root confirming the root-colonizing ability of the bacterium. The results of the study were quite encouraging as AzA exhibited better vegetative and reproductive growth of rice in pot and field experiment compared to formulated rhizospheric Azotobacter sp. (commercial product). Apart from that plants treated with AzA (supplemented 50% nitrogenous fertilizer of recommended dose) exhibited similar yield parameters when it was compared with the recommended dose of fertilizer (RDF; 120:60:60 mg N:P:K kg-1 soil/ without any bacterial). Therefore, it can be concluded that application of this plant growth promoting endophyte can reduce a substantial amount of N-fertilizer for field application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app