Add like
Add dislike
Add to saved papers

Growth inhibition of harmful cyanobacteria by nanocrystalline Cu-MOF-74: Efficiency and its mechanisms.

Metal-organic Frameworks (MOFs) as a new type of nanomaterials are extensively used in various fields of environment pollution remediation. However, the MOFs are rarely applied in the removal of cyanobacterial blooms, and more fundamental investigation is warrant for more insights into mechanisms for algae inhibition. In this study, Cu-MOF-74 was synthesized by a simple hydrothermal method, and its inhibitory effect on the growth of Microcystis aeruginosa was studied. Furthermore, its mechanisms were explored with respect to metal ion release, agglomeration, shading and algal cell membrane breakage, production of extracellular hydroxyl radical and intracellular reactive oxygen species. The results showed that the inhibition rate of M. aeruginosa was 372% after 24-h exposure when the concentration of Cu-MOF-74 exceeded 1 mg/L. However, the addition of Cu-MOF-74 at the concentration lower than 0.1 mg/L promoted the algal growth. The inhibition of algal growth by Cu-MOF-74 was basically attributed to the presence of hydroxyl radical and intracellular reactive oxygen species, with the released Cu2+ and cell aggregation involved to some extent. Overall, nanocrystalline Cu-MOF-74 is of great potential in the control of harmful cyanobacterial blooms and the inhibition is specific to the concentration of Cu-MOF-74.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app