Add like
Add dislike
Add to saved papers

Monte Carlo simulation of dose coefficients for a fish eye lens model exposed to monoenergetic electrons.

Vision is an important sense for the majority of the wildlife species, affecting their ability to find food and escape predation. Currently, no study on radiation induced cataract frequency on the fish eyes lens has been done. However, any thorough future study of this subject will require more accurate dose estimates for the fish eye lens than those currently available. For this purpose, the eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using the MCNPX Monte Carlo radiation transport code package. All results were validated against three different fish voxel models. The discrepancies between model results mainly originate from the different fish eye dimensions used in the different studies and in two of the cases the lack of a defined eye lens region. The dose conversion coefficients calculated in this work can be used to estimate the dose to the fish eye lens based on the activity concentration of the surrounding water. The model developed in this work has also demonstrated that the mathematical models still have several advantages over the voxel models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app